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The r e su l t s  a r e  given of an e x p e r i m e n t a l  inves t iga t ion  of tu rbulen t  flows in tubes of weak 
solut ions of polyox, po lyac ry l amide ,  and gnar  r es in .  On the bas i s  of the e x p e r i m e n t a l  r e l a -  
t ions obtained, the feas ib i l i ty  is  shown of ca lcu la t ing  the hydros ta t i c  r e s i s t a n c e  of the tube 
for s t r e a m s  of po lymer  solut ions.  

1. At p resen t ,  a large  number  of e x p e r i m e n t a l  r e p o r t s  is  known, devoted to the p rob lem of the effect  
of addi t ions  to w a t e r  of s m a l l  amounts  of c e r t a i n  h i g h - m o l e c u l a r  subs tances  on the r e s i s t a n c e  dur ing  tu rbu-  
lent flow of these  solut ions in tubes .  Never the les s ,  the r e su l t s  of these  inves t iga t ions  [1-8] a r e  diff icult  to 
compa re  with one another ,  as  a l l  the expe r imen t s  were  c a r r i e d  out on d i f ferent  equipments  with a d i f ferent  
p o l y m e r  sample  and by  d i f fe ren t  p r o c e d u r e s .  The re fo re ,  data about the nature  of turbulent  s t r e a m s  of poly-  
m e r  solut ions in tubes can be cons ide red  only as  qual i ta t ive .  These  data reduce to the fact that  with in-  
c r e a s e  up to a ce r t a in  l imi t ing  value of the magnitude of the po lymer  solution concent ra t ion  the effect  of 
lower ing  of the r e s i s t a n c e  by  the flow of the po l ym e r  solut ion is  g r e a t e r ,  the g r e a t e r  i s  the Reynold ' s  num- 
b e r  (flow ve loc i ty  of liquid in the tube); the magnitude of the th resho ld  value of the Reynold ' s  number  de-  
f in ingthe s t a r t  of the appea rance  of the lo~vered r e s i s t a n c e  effect  by the turbulent  flow of the po l ymer  so lu-  
t ions ,  d e c r e a s e s  with i n c r e a s e  of concent ra t ion  and reduct ion of d i ame te r ;  in the case  of la rge  concen t r a -  
t ions or  a ve ry  s m a l l  tube d i a m e t e r ,  a de layed t r ans i t i on  of l a m i na r  to turbulent  flow occurs ;  reduct ion of 
the tube d i a m e t e r  leads to an i n c r e a s e  of the effect  of r e s i s t a n c e  lowering.  

In connection with th is ,  inves t iga t ions  were  under taken to m e a s u r e  the f r ic t iona l  r e s i s t a n c e  of s t r e a m s  
of p o l y m e r  solut ions in tubes  for  the purpose  of obtaining quanti ta t ive data about the influence of var ious  
fac to rs  on the ef fec t  of r e s i s t a n c e  lower ing:  type of po lymer ,  magnitude of pipe d i ame te r ,  magnitude of 
solut ion concent ra t ion  and magnitude of the flow ve loc i ty  of the liquid in the tube. 

Polyox,  guar  and p o l y a c r y l a m i d e  were  chosen as  the po lymer  s a m p l e s .  

All  the inves t iga t ions  were  under taken by a s ingle p rocedure  on a hydros ta t i c  equipment  [9]. The 
pipes in which the inves t iga t ions  were  conducted were  made in te rchangeable  and they had a common length 
of 4.5 m~nd d i a m e t e r s  of 9.75, 20.9, and35.5 mm.  The. liquid flow ra t e s  were  va r i ed  over  the range 0.06-12 
l i t e r / s e c  and the Reynold ' s  number  over  the range 8 - 103 to 3 �9 105. The concent ra t ions  of the po l ymer  solu-  
t ions were  va r i ed  over  the range 10 -6 to 2 �9 10 -3 g / c m  3. 

All e x p e r i m e n t s  were  c a r r i e d  out, as  far  as  poss ib le ,  under condit ions which excluded des t ruc t ion  of 

the solut ions be ing  studied.  

The effect  of a c losed  c i r cu i t  on the authent ic i ty  of the r e su l t s  obtained proved to be ins ignif icant .  
With a volume of 0.ht for the hydros t a t i c  equipment,  dur ing the expe r imen t  the solut ion passed  through the 
pump one to two t i m e s  in the case  of s m a l l - d i a m e t e r  tubes and up to 5 t imes  in the case  of tubing with a di-  
a m e t e r  of 35.5 mm.  The expe r imen t  with a solution of each concentra t ion  was repea ted  s e v e r a l  (5-10) t imes ,  

each t ime with a f r e sh ly  p r e p a r e d  solution.  

2. Only the we l l -deve loped  turbulent  flow of weak po l ym e r  solut ions in tubes was inves t iga ted .  The 
r e su l t s  of a l l  the t e s t s  in i t i a l ly  were  r e p r e s e n t e d  in the form of the dependence of the coeff ic ient  of r e s i s -  
tance on the Reynold ' s  number  
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Fig.  1. Dependence of the magnitude of the reduct ion of r e s i s -  
tance S= (~ - ~  )/~w" 100% on the magnitude of the s h e a r  s t r e s s  

w 2 P 
~'w, d y n e / c m  , during flow in tubes of d i f ferent  d i a m e t e r  of poly-  
m e r  solut ions with d i f ferent  concent ra t ions  c, g/cm3: a) polyox; 
b) guar  res in ;  c) po lyac ry l amide .  

The c h a r a c t e r i s t i c  fea tu res  for the curves  1= f(Re, d) when c =cons t ,  for  a l l  the types  of flow cons id -  
e r ed ,  a r e  the following: 

a) a shif t  of the Reynold ' s  number  th resho ld  is  observed ,  which def ines  the s t a r t  of the appea rance  
of the r e s i s t ance  lowering effect  in the d i rec t ion  of la rge  values  of the Reynoid ' s  number  with in-  
c r e a s e  of d i ame te r ;  

b) the envelope drawn to the curve X= f(Re, d) when c = const ,  goes in p a r a l l e l  with the s i m i l a r  r e l a -  
t ion for  w a t e r  a t  a d is tance  equal  to the maximum d e c r e a s e  of r e s i s t a nc e  obtained for  a given con- 
cent ra t ion;  

c) for  each value of solution concentra t ion  there  is  a c h a r a c t e r i s t i c  max imum of the r e s i s t a n c e  lower-  
ing, which is  independent of the magnitude of the tube d i a m e t e r  in which flow is  being s tudied.  

F o r  a s t r e a m  of wa te r  in tubes of d i f ferent  d i a m e t e r ,  the magnitude of the s h e a r  f r i c t iona l  force at  
the wall  is  d i f ferent  for  the same Reynold ' s  numbers .  Because  of this ,  the assumpt ion  was made that  the 
effect  of the tube d i a m e t e r  when inves t iga t ing  s t r e a m s  of po l ym e r  solut ions can be excluded if  the e x p e r i -  
menta l  data is  r e p r e s e n t e d  in the form of a re la t ion  between the magnitude of the d e c r e a s e  of r e s i s t a n c e  
S= ffw-~f)/Tw dur ing  the flow of the po lyme r  solut ions and the magnitude of the s h e a r  f r ic t iona l  force  at  
the wall  ~f or  on the magnitude of the s h e a r  f r ic t ional  force  at  the wal l  for the case  of a s t r e a m  of wa te r  T w 
under condit ions of equal i ty  of the flow ve loc i t i es  of both s t r e a m s .  It is  noteworthy that  in the method 
chosen for p resen t ing  the expe r imen ta l  data,  i t  is  not n e c e s s a r y  to take into account the pseudop las t i c i ty  
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Fig. 2. Dependence of the relative magnitude of reduction of re -  
s is tance S/S 0 on the magnitude of the shear  s t r e s s  z_ , dyne /cm 2 

W 
during flow of polymer  solutions in tubes of different d iameter :  
a) solutions of polyox with concentrat ions of 1) c = 10-6; 2) 5 �9 10-6; 
3)10-5; 4) 5- 10 -5 g/cm3; b) solutions of gnar res in  with concen- 
t ra t ions:  1) c =6 .10-5 ;  2) 1.5.10"4; 3) 3.10-6; 4) 6 .10  -4 g/cm3; 
c) solutions of polyaovylamide with concentrat ions:  1) c = 10 -6 
2) 5-10-6; 3) 1.4.10-5; 4) 3 .5 .10  -5 g / c m  3. 

! - - 3  

CO-s! , 

of the polymer  solutions. Consideration of s imi la r  relations,  shown in Fig. 1, permits  the following prop- 
er t ies  to be noted: 

1) for polymer  solutions of one type, the magnitude of the shear  s t r e ss  Tw. c r  defining the s tar t  of 
the res is tance  lowering effect, is dependent neither on the concentration of the polymer  solution 
nor  on the d iameter  of the tubing in which the flow of these solutions is being studied; 

2) for each value of solution concentrat ion of one type of polymer,  there is a charac te r i s t i c  defined 
maximum value of the reduction of res is tance,  which is maintained constant under conditions such 
that T w >T. (~. is the value of the shear  frictional force at the wall, corresponding to saturation 
of the res is tance  lowering effect); 

3) the magnitude of the grea tes t  lowering of the res is tance S O increases  with increase  of concentra-  
tion, however when a value of S O ~75% is reached, further  increase  of the effect ceases ;  

4) the range of shear  s t r e s s e s  Zw, where saturation of the res is tance lowering effect is observed, 
depends on the magnitude of the polymer  solution concentration: the higher the concentration, the 
higher are  the values of the shear  s t r e s se s  at which the maximum value of S o remain.  With a 
g rea te r  shear  (at higher values of Tw) destruct ion of the solution is observed, which is expressed  
in a reduction of the res is tance lowering effect. 

On the basis  of the special  cha rac te r i s t i c s  noted for s t reams  of polymer  solutions, the effectiveness 
of each type of polymer  can be charac te r ized  by two graphs:  the dependence of its effectiveness S/S 0 onthe 
magnitude of the shear  frictional s t r e ss  T w at the wail (see Fig. 2) and the dependence of the maximum 
effectiveness S o on the solution concentrat ion.  

The nature of the function S0(c ) is represented in the form of a universal  graph i l lustrat ing the depen- 
dence of the maximum reduction of res is tance on the magnitude of its reduced concentrat ion c / c  0 (see Fig. 3), 
where c o is the concentrat ion to which a 60% reduction of res is tance corresponds  for a given type of poly- 
mer .  For  polyox, c o =2.7 �9 10 -~ g / c m  3, for polyacrylamide c o =2.7 �9 10 -5 g / c m 3 a n d f o r g n a r r e s i n c 0 = 6 . 1 0  -4 
g /c  m 3 . 
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Fig. 3. Dependence of the magnitude of maximum re-  
duction of res is tance S o = (TW--Tp)/T w �9 100% on the mag- 
nitude of the reduced viscosi ty  c / c  0 (c o corresponds  to 
S o =60%) for different types of polymers :  1) polyox; 2) 
gua r  resin; 3) polyacrylamide.  
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Fig. 4. Dependence of the magnitude of the 
shear  s t r e ss  T d, d y n e / c m  2, corresponding 
to s tar t  of breakdown of fresh solutions of 
poiyox and poiyacrylamide,  on their  con- 
centrat ion c, g/cm~: 1)polyox; 2 ) p o l y -  
acrylamide.  

The dependence of S/S 0 on the magnitude of the shear  f r ic-  
tional s t r e ss  at the wall T w (Fig. 2) is specific for each type of 
polymer,  although the nature of this dependence is identical for 
the types of polymers  considered.  I r i s  charac te r i s t ic  for th is  
dependence that the following four z ones can be disc rim[hated 
he re:  T w.c r < 7w < TW*-- increase  of the re sistance lowe ring with 
increase  of the f r i c t iona i s t ress  at the wall; T w <Tw.c r -absence  
of the polymer effect; % < T w < Tw.d. - saturation (constancy) of 
the magnitude of the res is tance lowe ring e ffect and T w < Tw.d . 

- reduction of the res is tance Ioweringeffect  with increase  of 
frictional force at  the wall (solution destruction).  It has been 
es tab l i shedexper imenta l ly tha t the  magnitude of the frictional 
shear  s t r e ss  at the wall Tw.cr and Tw. are  parameters  of the type 
of polymer.  For  poiyoxand poiyacryiamide,  Tw.cr < 10 dyne /cm 2 
andTw. ~ 80dyne/cm2; fo rgua r  resin, Tw.cr ~30 dyne/cm 2 
and TW* 400 dyne /cm 2. 

The magnitude of the shear  frictional s t r e s se s  TW. d. 
corresponding to the s ta r t  of breakdown of the polymer  solu- 
tion depends on the concentrat ion of the solution being in- 
vestigated: the higher the solution concentration, the g rea te r  
the shear  s t ress  Tw.d. .  

Figure 4 represents  the magnitude of the shear  s t r e ss  
TW. d. at  the wall of the tube, corresponding to breakdown of solutions of polyox and polyacrylamide.  The 
data for the solutions of polyox agree wellwith Fabula 's  data [10], obtained with flows in a sink of polyox 
301 solutions. It was not possible to obtain data on the magnitude of the shear  s t r e s s  Tw. d. for s t r eams  
of guar resin solutions in the experiments  mentioned. We note only that for this polymer  Ww. d. > 2500 
dyne /cm 2. These data permit  quantitative confirmation of the widespread opinion concerning polyox as 
being a polymer  which is very  unresis tant  to breakdown and guar resin as a polymer  which is very  r e s i s -  
tant to breakdown. 

In the experiments  with low-concentrat ion polyox solutions, the magnitude of the shear  s t r e s se s  ~w 
exceeded the magnitude of the shear  s t r e ss  TW. d. ' i.e., conditions were created for the breakdown of the 
solution, which also served as the basis  of assuming polyox to be an eas i ly  des t ruc t ib l epo lymer .  However, 
by increas ing the concentration of the solution above the optimum, it is possible to extend the range of the 
shear  s t r e s s e s  corresponding to the zone of saturation of the resis tance lowering effect (S o ~ 75%). Inthis  
case,  the choice of concentration of the polyox solution is determined by the quantity ~w. d . ,  which is 
g r e a t e r ,  the higher the solution concentration.  

3. On the basis  of the discussions set out above, a procedure can be proposed for calculating the re-  
sistance to flow in tubes of solutions of the polymers  which we have studied in our experiments ,  over a 
wide range of concentrations.  
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TABLE 1. Example  of Ca lcu la t ion  of Coeff ic ien t  of R e s i s t a n c e  in 
a Tube  

Vs, ~ ,dyne ~ ,  dyne 
~e m/sec zw llVcmZ s/s .  s ~/ern z ~p 

104 
5.10 ~ 
lOS 
5.106 
10 ~ 
1,2.106 

0,122 
0,61 
1,22 
6,10 

12,2 
14,6 

0,0300 
0,200 
0,0170 
0,0130 
0,0115 
0,0112 

0,6 
9,3 

31,7 
605 
2140 
3000 

0 
0,20 
0,78 
0,94 
1,00 
1,00 

0 
0,14 
0,53 
0,64 
0,68 
0,68 

0,6 
8,0 

14,9 
218 
685 
960 

0,0300 
0,0172 
0,0080 
0,0047 
0,0037 
0,9036 

The s c h e m e  is  given below of a ca l cu l a t i on  for the dependence  of the coef f ic ien t  of r e s i s t a n c e  X= 8v 
/ p v  2 on the R e y n o l d ' s  n u m b e r  Re = v s d / v  p for  the flow of a p o l y m e r  so lu t ion  (polyox, guar  r e s i n ,  and poly-  

a c r y l a m i d e ) ,  for  which the fol lowing w e l l - k n o w n  quan t i t i e s  a r e  a s s u m e d :  weight  c o n c e n t r a t i o n  of so lu t ion  
c; r e l a t i ve  v i s c o s i t y  of so lu t ion  ~? = V p / V w ;  d i a m e t e r  of tubing,  d, in which the flow is  s tudied,  and the range  
of v a r i a t i o n  of the R e y n o l d ' s  n u m b e r .  

1. F o r  the va lues  chosen  for  the R e y n o l d ' s  n u m b e r  ove r  a given range ,  the va lues  of the a v e r a g e  

flow ve loc i ty  Vsi =Re  i v p / d  a r e  d e t e r m i n e d .  

2. Values  of the coef f i c ien t  of r e s i s t a n c e  T w a r e  d e t e r m i n e d  for  flows of w a t e r  in  a tube of given 
d i a m e t e r  d for  condi t ions  of e q u i l i b r i u m  flow ra te  of th i s  s t r e a m  and of the so lu t ion .  

3. F r o m ' t h e  va lues  of the a v e r a g e  flow ve loc i ty  v s,  d e t e r m i n e d  for  a given R e y n 0 l d ' s  n u m b e r ,  the 
f r i c t i o n a l  s h e a r  s t r e s s  a t  the wal l  i s  ca lcu la ted :  

s 
�9 w = T P:~" 

4. Using the value of c o the m a x i m u m  reduc t ion  of r e s i s t a n c e  S o is  d e t e r m i n e d  for  a g iven c o n c e n t r a -  
t ion  of so lu t ion  (see Fig.  3). 

5. The va lues  of the r e s i s t a n c e  r educ t ion  (S/S0)g r expec ted  for  the ca l cu la t ed  flow of solut ion,  a r e  
d e t e r m i n e d  by  the ca lcu la ted  va lues  of the f r i c t i ona l  s h e a r  s t r e s s  a t  the wal l  of the tube ~w (see 
Fig.  2), which p e r m i t s  the expected  value of the f r i c t i ona l  s h e a r  s t r e s s  d u r i n g  flow of the so lu t ion  

in the tube to be ca l cu l a t ed :  

"c v = T w [1 - -  S O (S/So)gr] . 

6. The coef f ic ien t  of flow r e s i s t a n c e  Xp is  ca l cu l a t ed  f rom the value of the s h e a r  s t r e s s  Tp: 

~,, = 8 V o ~  ~ . 

The ca l cu la t ion  is g iven below of the value of the coef f ic ien t  of r e s i s t a n c e  as  a function of the Reyno ld ' s  
n u m b e r ,  for  the flow of a so lu t ion  of p o l y a c r y l a m i d e  with a c o n c e n t r a t i o n  of c = 5 �9 10 -5 g / c m  3 (7 = 1.22) i n a  
tube of d i a m e t e r  d = 100 mm,  over  the range  of v a r i a t i o n  of Re yno l d ' s  n u m b e r  1Re = 106 to 10 ~. In the ca l -  
cu l a t i ons ,  the so lu t ion  t e m p e r a t u r e  was a s s u m e d  to be 20~ i .e . ,  v w ~10 -~ m2/sec  and v =~?v = 1.22 �9 10 -~ 

5 3 f p w m2/ sec .  F o r  so lu t ions  of p o l y a c r y l a m i d e ,  c o = 2 . 7 . 1 0 -  g / c m  and the value o the reduced  c o n c e n t r a t i o n  
c / c  0 = 1.85. F o r  a value of c / c  0 = 1.85, a m a x i m u m  r e s i s t a n c e  reduc t ion  of S o = 68% is expected .  

A f u r t h e r  ca l cu l a t i on  is g iven in Tab le  1. It is  i nadv i sab l e  to c a r r y  out the ca l cu l a t i on  for Re > 1.2 �9 10 G 
b e c a u s e  a t  h ighe r  va lues  of the R e y n o l d ' s  n u m b e r  the quan t i ty  ~'w exceeds  the value of the s h e a r  s t r e s s ,  c o r -  
r e s p o n d i n g  to the s t a r t  of b reakdown of the so lu t ion  of given c onc e n t r a t i on  (see Fig.  4). 

d 

vs 
q 

P 
Vw 
,,p 

N O T A T I O N  

is  the d i a m e t e r  of tube of work ing  channel  ; 
is  the a v e r a g e  flow ve loc i ty  of l iquid in  tube;  
is  the ave r age  feed of l iquid into tube c r o s s  sec t ion :  
is  the dens i t y  of l iquid ; 
is  the k inemat i c  v i s c o s i t y  of w a t e r ;  
is the k inema t i c  v i s c o s i t y  of so lu t ion ;  
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~) = Vp/Vw 
R e  = dvs/V p 
TW 
Tp 

TW. cr 
TW* 

~'w.d. 

S = (TW--Tp)/~" w 
SO 
C 

c0 

is the relative viscosi ty  of polymer solution; 
is the Reynold 's  number ; 
is the frictional shear  s t r e ss  at the wall for flow of water  ; 
is the frictional shear  s t ress  at the wall for flow of polymer solution ; 
is the threshold value of shear  s t r e ss  at wall ; 
is the value of frictional shear  s t r e ss  at  wall, corresponding to saturation of the re -  
sistance lowering effect ; 
is the frictional shear  s t r e s s  at  the wall, corresponding to s ta r t  of breakdown of solu- 
tion ; 
is the coefficient of res i s tance ;  
is the amount of gain in res i s tance ;  
is the amount of maximum gain in res is tance for a defined solution concentrat ion;  
is the weight concentration of solution ; 
is the weight concentration of solution, corresponding to S o = 60%. 
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